
© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - i

2000 Annual RELIABILITY and MAINTAINABILITY Symposium

Software Reliability Engineering

Mladen A. Vouk

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - ii

Mladen A. Vouk
Department of Computer Science, Box 8206

North Carolina State University, Raleigh, NC 27695

Tel: 919-515-7886, Fax: 919-515-7896 or 6497
e-mail: vouk@csc.ncsu.edu, http://renoir.csc.ncsu.edu/Faculty/Vouk

Summary & Purpose

Software-reliability engineering (SRE) stems from the needs of software users. The day-to-day operation of our
society is increasingly more dependent on software-based systems and tolerance to failures of such systems is
decreasing. Software engineering is not only expected to help deliver a software product of required functionality
on time and within cost, it is also expected to help satisfy certain quality criteria. The most prominent one is
reliability. SRE is the "applied science of predicting, measuring, and managing the reliability of software-based
systems to maximize customer satisfaction."

This tutorial first provides general information about the nature of SRE and how it relates to software process,
including factors such as testing, cost and benefits. This is followed by an overview of the SRE terminology and
modeling issues. Finally, SRE practice is addresses by discussing specifics of SRE activities required during
different software life-cycle phases, including an example of how to generate SRE-based test-cases automatically.

Mladen A. Vouk

Mladen A. Vouk received B.Sc. and Ph.D. degrees from the King's College, University of London, U.K. He is a
Professor of Computer Science at the N.C. State University, Raleigh, N.C., U.S.A. Dr. Vouk has extensive
experience in both commercial software production and academic computing. He is the author, or co-author, of over
140 publications. His research and development interests include software engineering (software process and risk
management, software testing and reliability), scientific computing (development of numerical and scientific
software-based systems, parallel computing, scientific workflows), computer-based education (network-based
education, distance learning, education workflows), and high-speed networks (end-user quality of service, forward
error correction in high-speed networks, empirical evaluation of high-performance networking solutions). He
teaches courses in software engineering, software testing and reliability, software process and risk management, and
networking. He is closely associated with the N.C. State Multimedia and Networking Laboratory, and with the
Computer Science Software Engineering and Computer-Based Education Laboratories. He is a member of the N.C.
State Center for Advanced Computing and Communications.

He is a senior member of IEEE, a member of the IEEE Reliability, Communications and Computer Societies, a
member of the IEEE TC on Software Engineering, and a member of ACM, ASQC, and Sigma Xi. Dr. Vouk is also
a member of the IFIP Working Group 2.5 on Numerical Software. He is an associate editor of IEEE Transactions on
Reliability. He is a member of the Editorial Board for the Journal of Computing and Information Technology,
editor of the IEEE TCSE Software Reliability Engineering Newsletter, and a member of the Editorial Board for the
Journal of Parallel and Distributed Computing Practices. He has been associated with the International Symposium
on Software Reliability Engineering (ISSRE) since its inception. He was the General Chair of the 1992 symposium,
Program Co-Chair for the 1995 event, Publications Chair for the 1996 event, and Tutorials Co-Chair for the 1997
event.

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - iii

Table of Contents

1. Introduction ... 1
2. About SRE .. 1
3. Basic Terms... 1
4. Metrics and Models... 2

4.1 Reliability .. 2
4.2 Availability.. 5

5. Practice .. 7
5.1 Verification and Validation... 7
5.2. Operational Profile ... 8
5.3 Testing... 9

5.3.1 Generation of Test Cases.. 9
5.3.2 Pair-wise Testing.. 10

5.4 Process... 10
References ... 11
Appendix I - Copies of the Slides ... 12

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 1

1. Introduction

Software-reliability engineering (SRE) stems from the
needs of software users. The day-to-day operation of our
society is increasingly more dependent on software-based
systems and tolerance to failures of such systems is
decreasing. Software engineering is not only expected to help
deliver a software product of required functionality on time
and within cost, it is also expected to help satisfy certain
quality criteria. The most prominent one is reliability. SRE is
the "applied science of predicting, measuring, and managing
the reliability of software-based systems to maximize
customer satisfaction" [Mus90, Lyu96, She97, Mus98].

2. About SRE

SRE is the focus of practical technology transfer efforts in
many organizations with advanced software processes. For
example, SRE is an accepted "best practice" for one of the
major developers of telecommunications software (AT&T,
Lucent). It is practiced in many other software development
areas, including aerospace industry and network-based
education [She97]. This increased interest in SRE is driven, at
least in part, by the expectation that adoption of adequate SRE
technology will increase the competitiveness of an
organization or a project. There is mounting evidence that this
is the case. The benefits include more precise satisfaction of
customer needs, better resource and schedule control, and
increased productivity.

Examples of organizations that are using, experimenting
with, or researching SRE are Alcatel, AT&T, Lucent,
Hewlett-Packard, Hitachi, IBM Corp., Jet Propulsion
Laboratories, MITRE Corp., Motorola, NASA, NCR Corp.,
Nortel, Telcordia, U.S. Air Force, U.S. Navy, U.S. Army and
Toshiba. Although direct economic information is usually
difficult to obtain for proprietary reasons, studies show that
the cost-benefit ratio of using SRE techniques can be six or
more [Ehr93]. In one case, SRE has been credited with
reducing the incidence of customer-reported problems, and
maintenance costs, by a factor of 10. In addition, in the
system-test interval the number of software-related problems
was reduced by a factor of two, and in the product
introduction interval by 30 percent. The same system showed
no serious service outages within the first two years after its
release, and a considerably increased customer satisfaction. Its
sales were increased by a factor of 10, but only part of this is
attributed to the increased quality [Abr92, Mus93].

It is estimated that routine application of SRE does not
add more than several percent to the overall cost of a project.
For example, a project involving 40 to 100 persons may
require pre-project activities totaling about one to two person-
weeks, definition of the operational profile(s) may require one
to three person months, and routine collection and analysis of
project failure and effort data may cost between one half to
one person-day per week.

However, introduction of SRE into an organization will
be a strong function of the (software process) maturity of that
organization. Start-up costs may include deployment of an
automated failure, fault and effort collection system,
calibration of existing and development of organization-
specific reliability models and tools, staff training,
modification of the organizational culture, modifications in
the employed software processes, etc. SRE introduction
periods can range from six months to several years, again
depending on the maturity of the organization and the
available resources.

It is recommended that SRE be implemented
incrementally. Starting point should be the activities needed to
establish a baseline and learn about the product, about
customer expectations, and about the constraints that the
organizational business model imposes on its software
production [Pot97]. The initial effort includes collection of
basic failure data, monitoring of reliability growth during
system tests, field trials and software operation, and the initial
formulation of operational profiles. This should be followed
by the development of detailed operational profiles, detailed
classification of system failures and faults, and development
of business-based reliability objectives. More advanced stages
involve continuous tracking of customer satisfaction, trade-off
studies, quantitative evaluation of software process
capabilities with respect to reliability, and proactive process
control.

3. Basic Terms

Software-reliability engineering is the quantitative
study of the operational behavior of software-based systems
with respect to user requirements. It includes
 (1) Software reliability measurement (assessment) and

estimation (prediction);
 (2) Effects of product and development process metrics and

factors (activities) on operational software behavior;
 (3) Application of this knowledge in specifying and guiding

software development, testing, acquisition, use, and
maintenance.

Reliability is the probability that a system, or a system
component, will deliver its intended functionality and quality
for a specified period of "time", and under specified
conditions, given that the system was functioning properly at
the start of this "time" period. For example, this may be the
probability that a real-time system will give specified
functional and timing performance for the duration of a ten
hour mission when used in the way and for the purpose
intended. Since, software reliability will depend on how
software is used, software usage information is an important
part of reliability evaluation. This includes information on the
environment in which software is used, as well as the
information on the actual frequency of usage of different
functions (or operations, or features) that the system offers.
The usage information is quantified through operational
profiles.

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 2

"Time" is execution exposure that software receives
through usage. Experience indicates that the best metric is the
actual central processing unit (CPU) execution-time.
However, it is possible to reformulate measurements, and
reliability models, in terms of other exposure metrics, such as
calendar-time, clock-time, number of executed test cases (or
runs), fraction of planned test cases executed, inservice-time,
customer transactions, or structural coverage. In considering
which "time" to use, it is necessary to weigh factors such as
availability of data for computation of a particular metric,
error-sensitivity of the metric, availability of appropriate
reliability models, etc. An argument in favor of using CPU
time, or clock-time, instead of, for example, structural
software coverage, is that often engineers have a better
physical grasp of time, and, in order to combine hardware and
software reliabilities, the time approach may be essential. On
the other hand, it may make more sense to use "printed pages"
as the exposure metric when dealing with reliability of
printers.

When a system in operation does not deliver its intended
functionality and quality, it is said to fail. A failure is an
observed departure of the external result of software operation
from software requirements or user expectations [IEE88a,
IEE88b, IEE90]. Failures can be caused by hardware or
software faults (defects), or by how-to-use errors.

A fault (or defect, or bug) is a defective, missing, or
extra instruction, or a set of related instructions, that is the
cause of one or more actual or potential failures. Inherent
faults are the faults that are associated with a software product
as originally written, or modified. Faults that are introduced
through fault correction, or design changes, form a separate
class of modification faults. An associated measure is fault
density — for example, the number of faults per thousand
lines of executable source code. Faults are the results of
(human) errors, or mistakes. For example, an error in writing
a programming language branching statement, such as an if-
statement condition, will result in a physical defect in the
code, or fault, that will on execution of that statement transfer
control to wrong branch. If, on execution, such a program
does not produce the desired results, for example display a
particular picture, it is said to fail and a failure has been
observed.

How-to-use errors. Failures can be caused by software
faults, functional lacks in software, or user errors (for
example, lacks in user's knowledge). It is important to
understand that failures and how-to-use errors, and their
frequency, tend to relate very strongly to customer satisfaction
and perception of the product quality. On the other hand,
faults are more developer oriented, since they tend to be
translated into the amount of effort that may be needed to
repair and maintain the system.

Severity of a failure or fault is the impact it has on the
operation of a software-based system. Severity is usually
closely related to the threat the problem poses in functional
(service), economic (cost) terms, or in the case of critical
failures, to human life. An example of a service impact

classification is: critical, major and minor failure. Severity of
failures (or faults) is sometimes used to subset the operational
failure data, and thus make decisions regarding failures of a
particular severity, or to weight the data used in reliability and
availability calculations.

Operational profile is a set of relative frequencies (or
probabilities) of occurrence of disjoint software operations
during its operational use. A detailed discussion of operational
profile issues can be found in [Mus87, Mus93, Mus98]. A
software-based system may have one or more operational
profiles. Operational profiles are used to select test cases and
direct development, testing and maintenance efforts towards
the most frequently used or most risky components.
Construction of an operational profile is preceded by
definition of a customer profile, a user profile, a system
mode profile, and a functional profile. The usual participants
in this iterative process are system engineers, high-level
designers, test planners, product planners, and marketing. The
process starts during the requirements phase and continues
until the system testing starts. Profiles are constructed by
creating detailed hierarchical lists of customers, users, modes,
functions and operations that the software needs to provide
under each set of conditions. For each item it is necessary to
estimate the probability of its occurrence (and possibly risk
information) and thus provide a quantitative description of the
profile. If usage is available as a rate (e.g., transactions per
hour) it needs to be converted into probability. In discussing
profiles, it is often helpful to use tables and graphs and
annotate them with usage and criticality information.

4. Metrics and Models

A significant set of SRE activities are concerned with
measurement and prediction of software reliability and
availability. This includes, modeling of software failure
behavior, and modeling of the process that develops and
removes faults. A number of metrics and models are available
for that purpose [Mus98, Lyu96, Mus87, IEE88a, IEE88b,
Mal91, Xie91, AIA93]. This section examines the basic ideas.

4.1 Reliability

We distinguish two situations. In one situation, detected
problems are further pursued and fault identification and
correction takes place, for example, during software
development, system and field testing, and active field
maintenance. In the other situation, no fault removal takes
place, for example, between successive releases of a product.
In the first case we would expect the product to improve over
time, and we talk about reliability growth.

The quality of software, and in particular its reliability,
can be measured in a number of ways. A metric that is
commonly used to describe software reliability is failure
intensity. Failure intensity is defined as the number of
failures experienced per unit "time" period. Sometimes the
term failure rate is used instead. An interesting associated

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 3

measure is the mean time to failure. Often mean time to
failure is well approximated by the inverse of the failure
intensity or failure rate. Failure intensity can be computed for
all experienced failures, for all unique failures, or for some
specified category of failures of a given type or severity.
Failure intensity is a good measure for reflecting the user
perspective of software quality. When reliability growth is
being experienced, failure intensity will decrease over time.

When there is no repair, it may be possible to describe the
reliability of a software-based system using constant failure
intensity, λ, and a very simple exponential relationship:

R(t) ~ e−λτ (1)

where R(t) is the reliability of the system, and "τ" is the
duration of the mission. For example, suppose that the system
is used under representative and unchanging conditions, and
the faults causing any reported failures are not being removed.
Let the number of failures observed over 10,000 hours of

operation be 7. Then, failure intensity is about λ̂ = 7/10000 =
0.0007 failures per hour, and the corresponding mean time to
failure is about 1/λ = 1428 hours. From equation (1), and
given that the system operates correctly at time t = 0 hours,
the probability that the system will not fail during a 10 hour

mission is about R(10) = e-0.0007*10 = 0.993.

Where software reliability growth is present, failure
intensity, λ(τ), becomes a decreasing function of time τ during
which software is exposed to testing and usage under
representative (operational) conditions. There is a large
number of software reliability models that address this
situation [Lyu96], but before any modeling is undertaken, it is
a good idea to confirm the presence of the growth using trend
tests [Mus87, Kan93b]. All models have some advantages and
some disadvantages. It is extremely important that an
appropriate model be chosen on a case by case basis [Mus87,
Bro92, Lyu96].

Two typical models are the "basic execution time" (BET)
model [Goe79, Mus87] and the Logarithmic-Poisson
execution time (LPET) model [Mus84, Mus87]. Both models
assume that the testing uses operational profiles, and that
every detected failure is immediately and perfectly repaired1.
The BET failure intensity λ(τ) with exposure time τ is:

λ(τ) = λ0e
-

λ0
ν0

 τ
 (2)

where λ0 is the initial intensity and ν0 is the total expected
number of failures (faults). It is interesting to note that the

1There are some other assumptions that have to be satisfied (see
Mus87). Also, there are model variants that operate with different
assumptions, such as delayed and less than perfect fault repair.

model becomes linear if we express intensity as a function of
cumulative failures

λ(τ) = λ(µ) = λ0 (1 -
µ
νο

) (3)

where µ(τ) is the mean number of failures experienced by
time τ, or the mean value function, i.e.

µ(τ) = ν0(1 - e
-

λ0
ν0

 τ
) (4)

On the other hand, the LPET failure intensity λ(τ) with
exposure time τ is:

λ(τ) =
λ0

λ0 θ τ + 1
 (5)

where λ0 is the initial intensity and θ is called the failure
intensity decay parameter since

λ(τ) = λ(µ) = λ0e
- θ µ

 (6)

and µ(τ) is the mean number of failures experienced by time τ,
i.e.,

µ(τ) =
1
θ ln(λ0 θ τ + 1)) (7)

The BET model represents a class of "finite-failure"
models for which the mean value function tends towards a
level asymptote as exposure time grows, while the LPET
model is a representative of a class of models called "infinite-
failure" models since it allows an unlimited number of
failures. Of course, both classes of models can be, and are
being, used to describe software fault removal processes that
may involve only a finite number of actual faults [Jon93].

Given failure intensity data, it is possible to estimate
model parameters. Estimation can be made in many ways.
Two common methods are maximum likelihood and least
squares [Mus87]. It is very important to understand that there
are two distinct ways of using a model. One is to provide a
description of historical (already available) data. The other is
to predict future reliability measures and events during actual
testing or operation, such as "when will the intensity reach a
target value", or "when can I stop testing". Predictions are
more interesting from a practical standpoint, but also the more
dangerous. Brocklehurst and Littlewood note that no single
model can be universally recommended, and accuracy of
reliability measures produced by a model can vary greatly.
However, there are advanced statistical techniques, such as u-
plots and prequential likelihood ratio, that can alleviate the
accuracy problem to some extent [Bro92. Lyu96].

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 4

Once a model has been selected and its parameters
estimated, it is possible to compute quantities such as the total
number of faults in the code, future failure intensity and, given
a target intensity, how much longer the testing needs to go on.
For instance, suppose that it was determined that the BET
model is appropriate. Then it follows from equation (2) - (4)
that the number of additional failures, ∆µ, that must be
experienced to achieve failure intensity objective λF is

∆µ =
ν0
λ0

 (λP - λF) , (8)

where λP is the present failure intensity. Similarly, the

additional execution time, ∆τ, required to reach the failure
intensity objective is

∆τ =
ν0
λ0

 ln
λP
λF

 (9)

For example, assume that it is estimated that there are a
total of ν0=120 faults in the code, that λ0= 15 failures per

CPU hour, that λP = 2.5 failures per CPU hour, and the
objective is to achieve 0.0005 failures per CPU hour. Then,

∆µ =
120
15 (2.55 - 0.0005) ~21 failures, and ∆τ =

120
15 ln

2.55
0.0005 ~ 68.3 CPU hours. If it is known what effort

expenditure is required to detect a failure, identify and correct
the corresponding fault, and how much cost is associated with
exposure time, it is possible to construct economic models that
relate the testing not only to the resultant quality, but also to
the expended effort (cost) [Mus87, Ehr93, Yam93].

The estimates given in the above example are known as
point estimates since they involve only the "most likely" or
the "best" value. However, in practice, it is extremely
important to compute confidence bounds for any estimated
parameters and derived quantities in order to see how much
one can rely on the obtained figures [Mus87]. This involves
computation of probable errors (variances) for both the model
parameters and the derived quantities. Instead of presenting
the projections as single values we need to present them as an
appropriate interval (e.g., 70%, 90% or 95% confidence
interval). For example, instead of saying that 21 failures are
expected to occur before we reach the target intensity, we
might use the 90% interval, say from 17 to 25 failures, or [17,
25]. It is essential that a person selecting models and making
reliability predictions is appropriately trained in both software
(reliability) engineering and statistics.

Since a large fraction of the variability in the estimates
usually derives from the variability in the collected data,
accurate and comprehensive data collection is of ultimate
importance. For example, data collection should include the
times of successive failures (alternatively intervals between
failures may be collected, or the number of failures
experienced during an interval of testing — grouped data —
may be recorded), information about each corrected fault,

information about the parts of the code and product modules
affected by the changes, information about the expended
effort, etc.

It is recommended that both the data collection and the
model estimation be automated and tool-based. Examples of
reliability oriented data-sets and tools can be found on the
CD-ROM that comes with the Handbook of Software
Reliability Engineering [Lyu96]. Examples of tools that can
aid in software reliability estimation are SMERFS [Far88,
Lyu96] and RelTools [Mus90] on Unix , CASRE on DOS and
Windows [Lyu92, Lyu96], and SoRel on Macintosh
computers [Kan93a. Lyu96]. Example of a tool that can help
in test-case development, and that we discuss further later in
this tutorial, is PairTest [Lei98].

Figure 1 illustrates maximum likelihood fits for BET and
LPET models to a well known system test data set called T1
[Mus87]. The plot is of the natural logarithm of failure
intensity vs. execution time. It is also quite common to plot
failure intensity against cumulative failures to see if the
relationship given in equation (2) holds. While graphs can be
used to screen the data for trends, statistical tests must be used
to actually select a model [Mus87, Bro92]. In this case the
tests show that the LPET model fits somewhat better than the
BET model. However, in a different project the BET, or some
other model, may be better than the LPET model. Figure 2
shows the cumulative failure distribution obtained from the
data and the models.

SRE models tend to assume exposure (testing) based on
an operational profile. Since this assumption is usually
violated during early software testing phases (for example,
during unit-testing and integration-testing), assessment and
control of software quality growth during non-operational
testing stages is difficult and open to interpretation. In an
organization that constructs its final deliverable software out
of a number of components that evolve in parallel, an added
problem can be the variability of the quality across these
components.

100000800006000040000200000
10 -4

10 -3

10 -2

10 -1

T1 Data from Musa et al. 1987

CPU Execution Time (sec)

Fa
ilu

re
 In

te
ns

ity
 (

fa
ilu

re
s/

C
PU

 s
e

c

Basic Execution Time Model

Logarithmic-Poisson Model

Observed Intensity

Figure 1. Empirical and modeled failure intensity.

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 5

Another confounding factor can be the (necessary)
discontinuities that different testing strategies introduce within
one testing phase, or between adjacent testing phases. For
instance, unit-testing concentrates on the functionality and
coverage of the structures within a software unit, integration-
testing concentrates on the coverage of the interfaces,
functions and links that involve two or more software units,
etc. It is not unusual to observe an apparent failure-intensity
decay (reliability growth) during one of the phases, followed
by an upsurge in the failure-intensity in the next phase (due to
different types of failures). This oscillatory effect can make
reliability growth modeling difficult, although several
different approaches for handling this problem have been
suggested [e.g., Mus87, Lyu92. Lyu96] .

100000800006000040000200000
0

20

40

60

80

100

120

140 T1 Data from Musa et al. 1987

CPU Execution Time (sec)

C
um

la
tiv

e
 F

a
ilu

re
s

Basic Execution Time Model

Logarithmic-Poisson Model

Observed

Figure 2. Observed and modeled cumulative failures.

A large class of models that can be useful in the context
of early testing phases, and non-operational testing in general,
are the so called "S-shaped" models that describe failure
intensity that has a mode or a peak [Yam83, Ohb84, Mus87,
Yam93]. These models derive their name from the S-like
shape of their cumulative failure distributions. Figures 3 and 4
illustrate use of a Weibull-type model [Mus87] during unit
and integration testing phases of a telecommunications
software product [Vou93, Lyu96].

0 50 100 150 200 250 300 350

Execution Time

Empirical
Intensity

Weibull
Fit

Weibull
Average Intensity

Empirical
Average Intensity

Figure 3 Empirical and modeled intensity profiles obtained
during an early testing phase. Exposure is the cumulative test
case execution time "t". Average intensity at time "t" is the

total number of failures experienced by "t" divided by the total
execution time.

The need to recognize software problems early, so that
appropriate corrections (process feedback) can be undertaken
within a single software release frame, is obvious. How to
achieve this is less clear. In general, it is necessary to link the
symptoms observed during the early testing phases with the
effects observed in the later phases, such, as identification of
components that may be problem-prone in the early
operational phase. Several authors have published models that
attempt to relate some early software metrics, such as, the size
of the code, Halstead length, or cyclomatic number, to the
failure proneness of a program [Kho90, Mun92, Bri93]. A
more process-oriented approach is discussed in [Vou93,
Lyu96]. Highly correlated nature of the early software
verification and testing events may require the use of a more
sophisticated, time-series, approach [Sin92].

0

0 50 100 150 200 250 300 350

Weibull
Model

Empirical Data

Execution Time
Figure 4 Empirical and modeled failures obtained during an

early testing phase.

4.2 Availability

Another important practical measure for software quality
is availability. For example, the Bellcore2 unavailability target
for telecommunications network elements is about 3 minutes
of downtime per year. Availability is the probability that a
system, or a system component, will be available to start a
mission at a specified "time" [Fra88]. Unavailability is the
opposite, the probability that a system or a system component
will not be available to start a mission at a specified "time".
The concept of (un)availability is closely connected to the
notion of repairable failures.

Recovery from failures can be expressed through
recovery or repair rate, ρ, that is the number of repaired
failures per unit time. For example, software failures may

2Bellcore is an organization that acts as a software quality
"watchdog" from within the U.S. telecommunications
community.

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 6

result in a computer system outages that, on the average, last
10 minutes each before the systems is again available to its
users. The estimated repair, or recovery, rate for the system is
then 1/10 failures per minute. System availability can be
expressed in several ways. For example, instantaneous
availability is the probability that the system will be available
at any random time t during its life. Average availability is
the proportion of time, in a specified interval [0,T] that the
system is available for use [San63].

We can estimate average software availability in the
period [0, T] as:

Âc(T) =

 Total time software operated correctly in the given period
T (10)

Associated with average availability are average failure

(λ̂ c(T)) and recovery rates (ρ̂ c(T)) estimates

λ̂ c(T) =
Total Number of Failures in Period T

 Total Time System was Operational During Period T (11)

ρ̂ c(T) =

Total Number of Failures in Period T

 Total Time System was under Repair or Recovery During Period T

(12)

If the period T is long enough, the average availability
approaches steady state availability, Ass which, given some
simplifying assumptions, can be described by the following
relationship [Tri82, Sho83]):

Ass =
ρ

λ+ρ (13)

We see that two measures which directly influence the
availability of a system are its failure rate (or outage rate as
failure rate is sometimes called) and its field repair rate (or
software recovery rate). Figure 5 shows failure and recovery
rates observed during operational use of a telecommunications
product [Cra92]. Apart from the censored3 "raw" data two
other representations are shown. In one, the data are
smoothed using an 11-point symmetrical moving average. In
the other, we show cumulative average of the data. Note that
immediately after the product release date, there is
considerable variation in the failure rate. This is the transient
region. Later the failure rate reduces and stabilizes. In a
system which improves with field usage we would expect a

3 Zero valued data points are not shown in order to allow the
use of logarithmic scale on the ordinate.

decreasing function for failure rate with inservice time4

(implying fault or problem reduction and reliability growth).

2001000

.0000001

.000001

.00001

.0001

.001

.01

.1

1

10

Failure Rate

11 pt Smoothed Failure Rate
Average Failure Rate

Average Recovery Rate
Recovery Rate
11 pt Smoothed Recovery Rate

Failure Rate vs Recovery Rate

Inservice Time

O
ut

a
g

e
s

p
e

r I
ns

e
rv

ic
e

 T
im

e

Failure Rate

Recovery Rate

Figure 5. Field recovery and failure rates for a
telecommunications product.

5004003002001000

.0000001

.000001

.00001

.0001

.001

Inservice Time

U
na

va
ila

b
ili

ty

Instantaneous
unavailability

Cut-off
point

Model for
Instantaneous Unavailability

Empirical average
unavailability

Model for
Average Unavailability

Figure 6. Unavailability fitting using LPET and constant
repair rate with data up to "cut-off point" only.

Field failure rate is usually connected to both the
operational usage profile and the process of problem
resolution and correction. Recovery rate depends on the
operational usage profile, the type of problem encountered,
and the field response to that problem (i.e., the duration of
outages in this case). It is not unusual for a recovery rate to be
3 to 4 orders of magnitude larger than the failure rate.

In practice, reliability and availability models would be
used to predict future unavailability of a system. Of course,
only the data up to the point from which the prediction is
being made would be available. The prediction would differ
from the true value depending on how well the model
describes the system. We illustrate this in Figure 6. It shows
the empirical unavailability data and fits for two simple
models. The fits are based on the average recovery rate
observed at the "cut-off point", and the LPET failure fit to the
points from the beginning of the release's operational phase up

4 Total time the software-based system was in service, that is,
either operating correctly or going through a repair or
recovery episodes, at all sites that have the software installed.

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 7

to the "cut-off point". The figure shows that, in this case, both
models appear to predict future system behavior well. The
models are described in [Cra92]. Other models are available,
e.g., [Lap91].

The point to note is that a relatively simple model can
have quite reasonable predictive properties for a system that
has known history (through multiple releases) and is
maintained in a stable environment.

5. Practice

5.1 Verification and Validation

It is not feasible to practice SRE without sound and solid
software verification and validation plan, process and
activities throughout software life-cycle. An example of such
a plan can be found in the IEEE software engineering
standards [IEE86]. SRE implies use of modern fault-
avoidance, fault-identification, fault-elimination, and fault-
tolerance technology. SRE extends that technology through
quantification and matching with the business model. This
includes construction and quantification of software usage
profiles, and specification of a balance between software
reliability and other constraints. SRE practices require
collection and analysis of data on software product and
process quality, estimation and tracking of reliability,
guidance of software development processes in terms of
resources and "when-to-stop" testing information, and
monitoring of software field reliability. SRE tracking and
analyses are used to improve organizational software
development and maintenance process and maximize
customer satisfaction. The following paragraphs provide an
overview of the principal SRE activities during a typical
[Pre97] software life-cycle.

The IEEE verification and validation (V&V) standard
suggests that following V&V tasks be conducted during a
software requirements specification and analysis phases:
i) software requirements traceability analysis, ii) software
requirements evaluation, iii) software requirements interface
analysis, iv) system test plan generation, and v) software
acceptance test plan generation. SRE augments these activities
by requiring that the developers, in conjunction with the
customer (users) need to a) explicitly define and categorize
software failure modes, b) determine reliability needs of the
customer and analyze the economic trade-offs (schedule vs.
quality vs. cost), c) determine software usage profile(s), and d)
set reliability targets for the product.

Identification and classification of software failure
modes and their severity will depend on the application,
customers, and maintenance needs. For example, U.S. Federal
Communications Commission requires service disruptions,
such as loss of telephone service, that exceed 30 minutes and
affect more than 50,000 customer to be reported to FCC
within 30 minutes of its occurrence [FCC92]. In this context,
a telephone switch failure may be classified, in descending
order of severity, as 1) FCC-reportable, 2) complete system

outage of less than 30 minutes or affecting less than 50,000
customer lines, 3) loss of one or more principal functionalities
or services, 4) loss of functionality that allows use of back-up
or workaround options, 5) minor inconvenience or
inefficiency. In order to diagnose the root causes of a failures
it is important to gather failure data. A failure that caused a
complete system outage, may be further sub-classified by its
identified or hypothesized cause into hardware-caused,
software-caused, procedural (e.g., the system operator made a
mistake and accidentally shut the system down), or unknown.
Within each sub-class it is possible to have additional
categories. For example, if system availability (or repair time)
is important, it may be advantageous to classify failures by
their duration (e.g., less than 2 minutes, 2 to less than 5
minutes, 5 to less than 10 minutes, 10 to less than 30 minutes,
30 or more minutes).

Reliability target is established by considering the needs
of customers as well as the limitations of the software
engineering technology, capabilities of the developers, and
other constraints such as the oerganizational business model
and development costs and schedules. Usually, separate
objectives are set for reach software failure category. For
example, Bellcore has established generic requirements for
performance evaluation of telecommunications systems
[Bel90]. The Bellcore target for a network switching element
(e.g., a telephone exchange) is about 3 minutes of downtime
per year and a complete outage failure is recognized if the
services is down for over 30 seconds. Of course, this is not
just a reliability requirement but also an availability
requirement. In fact, it specifically average unavailability for
the system of about 3/(60*24*365).= .00000571. To compute
the reliability target it is necessary to also establish a target
value for system repair. For instance, under a simplifying
assumption that the system has actually stabilized in its steady
state, we can use the relationship (13) to set a possible
reliability target. Let the average system repair rate be ρ=0.3
failures per minute. Then substituting required availability 1-
0.00000571 = .99999429 and known repair rate into (13), and
solving for the average system failure rate we find that it
should not exceed .00000171 failures per min. Practice shows
that this is a reasonable and achievable target for
telecommunication software.

The IEEE standard also suggests that the following tasks
be conducted during a software design, coding, unit testing
and integration testing phases: i) design and code traceability
analyses, ii) evaluations of software designs, code and
documentation, iii) software interface analyses, iv) generation
of test plans for software components and for their integration,
and v) design, generation and execution of test cases. SRE
augments these activities by requiring software developers to
a) finalize functional and define operational profiles, b)
evaluate reliability of software components that are "re-
used", c) explicitly allocate reliability among software
components and engineer the product to meet reliability
objectives, d) use resource and schedule models to guide
development workload according to functional profiles, and e)
track and manage fault introduction and removal process.

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 8

An important activity in the design phase is allocation of
reliability objectives to sub-systems and components in such
as way that the total system reliability objective is achieved.
The allocation approach should be iterative and it should
include consideration of alternative solutions. The "balance"
one is looking for is between the overall system reliability,
and the development schedule and effort (cost). Available
options include inclusion of good exception handling
capabilities and use of different fault-tolerance techniques
[Pha92, Lyu94] combined with systems and software risk
analysis and management [Boe89].

Use of inspections and reviews is highly recommended
in all phases of the software development process [IEE86].
They provide a means of tracking and managing faults
during the stages where the software is not in executable form,
as well as in the stages where it is. A rule-of-thumb metric is
the number of major faults per person-hour spent on
preparation and conduct of inspections. If this metric is in the
range 3 to 7, the inspection process as well as the software
process is probably under control, otherwise some corrective
action is needed. More details can be found in [IEE86,
Chr90]. Once executable software is available tracking and
management can be supplemented using reliability models and
reliability control charts.

Evaluation of the reliability of legacy code and of any
"acquired" or "re-used" code, using operational profiles
appropriate for the current application, is also recommended
to ensure that the reliability of the "inherited" code is still
acceptable. A special form of control charts may be used to
monitor progress and decide on whether to accept or reject
the components [Mus87].

5.2. Operational Profile

A crucial activity is definition of operational profiles
and associated test cases. The process involves definition of
customer, user and system-mode profiles, followed by the
definition of functional and operational profile(s). For
example, a customer is a person, a group, or an institution
that acquires the system. The following table illustrates a
hypothetical customer profile for telephone switch software.
We show two categories of customers and the associated
probability that the customer will use the product. The
probability information could come from actual
measurements, or it could be gleaned from sales data.

Hypothetical Telephone Switch
Customer

group
Probability

Local Carrier 0.7
Inter-City

Carrier
0.3

The next step is to identify the users. A user is a person, a
group, or an institution that employs the system. Users are
identified within each customer category. For example:

User
group

Local (0.7) Inter-City
(0.3)

Total

within total within total
Household

s
0.6 0.42 0.2 0.06 0.48

Businesses 0.3 0.21 0.6 0.18 0.39
Emergency

Services
0.05 0.035 0.001 .0003 .0353

Other 0.05 0.035 0.199 .0597 .0947

For instance, the above table shows that within the local
carrier category 60% of the users are households, 30%
businesses, 5% emergency services, and 5% other users. The
contribution that local households make to the total traffic is
42% (0.7*0.6 = 0.42), the contribution that inter-city
household calls make to the total traffic is 6%, and the
household user class as a whole accounts for 48% of the total
switch usage.

The system can be used in several modes. A system mode
is a set of functions or operations that are grouped for
convenience in analyzing execution behavior [Mus90].
System can switch among modes, and two or more modes can
be active at any one time. The procedure is to determine the
operational profile for each system mode. Modes can be
defined on the basis of user groups, environment (e.g.,
overload vs. normal, high-noise vs. low-noise), criticality, user
experience, platform, how user employs system operations to
accomplish system functions, etc. For example, consider the
following table. Assume that 99% of inter-city and 90% of
local household traffic is voice, while only 70% of business
traffic is voice for both customer categories. Furthermore
assume that system administration accounts for 30% and
maintenance for 70% of the "Other" user category, while the
rest of the traffic is DATA). Then

Mode Probability
Voice

(personal)
0.4374 0.42*0.9+0.06

*0.99
Voice

(business)
0.273 0.39*0.7

Data 0.1596 0.42*0.1 +
0.06*0.01 +

0.3*0.39
Emergency 0.0353 0.0353

System Admin. 0.02841 0.0947*0.3
Maintenance 0.06629 0.0947*0.7

To obtain functional profile it is now necessary to break
each system mode into user-oriented functions needed for its
operations and associated probabilities (e.g., features plus the
environment). A function may represent one or more tasks,
operations, parameters, or environmental variables (e.g.,
platform, operating system). The list of functions should be
kept relatively short (e.g., from about 50 to several hundred).
It should be noted that the functions will tend to evolve during
system development and the profiling process is an iterative
one.

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 9

The final two steps are the definition of an operational
profile through explicit listing of operations and generation of
test cases. The operations are the ones that are tested. Their
profile will determine verification and validation resources,
test cases and the order of their execution. The operations
need to be associated with actual software commands and
input states. These commands and input states are then
sampled in accordance with the associated probabilities to
generate test cases. Particular attention should be paid to
generation of test cases that address critical and special issues.

Operational profiles should be updated on a regular basis
since they can change over time, and the number of operations
that are being tested should be limited. Probability may not be
the only criterion for choosing the profile elements. Cost of
failure (severity, importance) of the operations plays a role. In
fact, separate profiles should be generated for each category of
criticality (typically four separated by at least an order of
magnitude in effects) [Mus90].

5.3 Testing

Input space for a program is the set of discrete input states
that can occur during the operation of the program. The
number of dimensions of the input space is equal to the sum of
the dimensions of the input variables. An input variable is any
data item that exists external to a program is used by the
program, while an output variable is any data item that exists
external to the program and is set by the program [Mus87].
Note that in addition to the usual program parameters,
externally initiated interrupts are also considered as input
variables. Intermediate data items are neither input nor output
variables.

5.3.1 Generation of Test Cases

In principle, one would use the operational profile of a
product to identify the most important scenarios for the
system and the corresponding operations and associated input
states and thus develop test cases. Operational profile based
testing is quite well behaved, and when executed correctly,
allows dynamic evaluation of software reliability growth based
on “classical” reliability growth metrics and models and use of
these metrics and models to guide the process [Mus87,
Mus98].

Unfortunately, in reality things may not be so
straightforward. The challenges of modern “market-driven”
software development practices, such as the use of various
types of incentives to influence workers to reduce time to
market and overall development cost, seem to favor a resource
constrained approach which is different from the “traditional”
software engineering approaches [Pot97]. In this case, the
testing process is often analogous to a “sampling without
replacement” of a finite (and sometimes very limited) number
of pre-determined input states, data and other structures,
functions, and environments [Riv98a, Riv98b]. The principal
motive is to verify required product functions (operations) to

an acceptable level, but at the same time minimize the re-
execution of already tested functions (operations). This is
different from strategies, that advocate testing of product
functions according to the relative frequencies of their usage
in the field, or according to their operational profile discussed
in the previous subsection [Mus98]. These testing strategies
tend to allow for much more re-execution of previously tested
functions and the process is closer to a “sampling with (some)
replacement” of a specified set of functions.

In an “ideal” situation the test-suite may consist only of test-
cases that are capable of detecting all faults, and defect
removal is instantaneous and perfect. In “best” cases sampling
without replacement, the one that usually operates in resource
constrained situations, requires less test-steps to reach a
desired level of “defects remaining” than methods that re-use
test-steps (or cases) or re-cover already tested constructs, such
as those based on operational profiles. However, in practice, it
may turn out that test-cases constructed using operational
profiles may be more efficient and more comprehensive than
those constructed using some non-ideal coverage-based
strategy. If not executed properly, testing based on sampling
without replacement will yield poorer results.

For instance, when there are deviations from the “ideal”
sampling without replacement, as is usually the case in
practice a number of defects may remain uncovered by the
end of the testing phase. Figure 7 illustrates the differences.

1.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

Fraction of Test Cases Executed

Simulation

"Sampling
Without
Replacement"

"Sampling With
Replacement"

Guided Constrained
Testing

Traditional
Testing

Fraction of Testing Resources Expended

Unguided Constrained
Testing

Target
Quality
Level

Figure 7. Fraction of shipped defects (y-axis) for two “ideal”
testing strategies based on sampling with and without
replacement, and a “non-ideal” testing under schedule and
resource constraints.

“Unguided” constrained testing illustrates a failed attempt
to cut the resources to about 20% of the resources that might
be needed for complete operational-profile based test of a
product. The selection of the test cases suite was inadequate,
and although the testing is completed within the required
resource constraints, it only detects a small fraction of the
latent faults (defects). In the field, this product will be a
constant emitter of problems and its maintenance will
probably cost many times the resources “saved” during the
testing phases. “Traditional” testing illustrates ideal testing
based on operational profile that detects all faults present in
the software but takes up more resources. Finally, “guided”

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 10

constrained testing illustrates an ideal situation where every
test case reveals a fault and no resources or time is wasted.

A good way to develop “guided” test-cases is to start with a
test-suite based on the operational profile and trim the test
cases in a manner that preserves coverage of important
parameters and coverage measures. One such approach is
discussed by Musa in his book [Mus98]. Another one is to use
pair-wise test-case generation systems [Coh94, Coh96, Coh97,
Lei98]. Of course, there are many other possible approaches,
and many of the associated issues are still research topics.

5.3.2 Pair-wise Testing

Pair-wise testing is a specification-based testing strategy
which requires, in principle, that every combination of valid
values of any two input parameters of a system be covered by
at least one test case. Empirical results show that pair-wise
testing is practical and effective for various types of software
systems [Coh94, Coh96, Coh97]. According to Lei and Tai the
Pair-wise testing steps are as follows [Lei98]:
a) “For each input parameter, specify a number of valid

input values. If a parameter has a large number of valid
values, choose representative and boundary values. The
first value of each parameter must be a representative
value of the parameter”.

b) “Specify a number of relations for input parameters,
where a relation is a set of two or more related input
parameters. An input parameter may be in two or more
relations. If an input parameter does not appear in any
relation, it is called a non-interacting parameter. For
each relation, constraints can be provided to specify
prohibited combinations of values of some parameters in
the relation. Each constraint is defined as a set of values
for distinct parameters”.

c) “Generate a test set for the system to satisfy the following
requirements: (i) For each relation, every allowed
combination of values of any two parameters in the
relation is covered by at least one test, (ii) For each non-
interacting parameter, every value of the parameter is
covered by at least one test, (iii) Each test does not satisfy
any constraint for any relation, and (iv) The first test
contains the first value of each parameter”.

For example, a system was found to have parameters A, B,
and C as the most important parameters according to the
operational profile studies (it could also be that it only has
these three parameters at the level of abstraction at which the
testing is being conducted). Let the most important (e.g., most
frequent, or highest risk, or all, etc) values be

A B C

A1 B1 C1
A2 B2 C2
A3 B3

Then, we will need 3x3x2 = 18 test cases if all three
parameters are related (interacting) and we wish to cover all
combinations of the parameters. On the other hand, pair-wise

testing strategy requires only nine (9) tests to cover all PAIRS
of combinations at least once.

A B C

A1 B1 C1
A1 B2 C2
A1 B3 C1
A2 B1 C2
A2 B2 C1
A2 B3 C2
A3 B1 C1
A3 B2 C2
A3 B3 C1

One can, of course, add constraints and further reduce the
number of test cases. For example, if combination (A3, B3) is
forbidden, the last test case could be deleted without affecting
the coverage of (A3,C1) and (B3,C1), since they are covered
by (A3,B1,C1) and (A1,B3,C1), respectively. As the number
of parameters grows, the number of test cases required by pair-
wise testing strategy grows linearly with the number of
parameters rather than exponentially as it does with strategies
which execute all combinations of the parameters (see the
example in Slides 45 and 46 in the Appendix.

Pair-wise testing can be used for different levels of
specification-based testing, including module testing,
integration testing, and system testing. It is also useful for
specification-based regression testing (see example in the
Appendix). Different levels of testing for a system have
different sets of input parameters. The number of tests
generated for pair-wise testing of a program unit depends upon
the number of input parameters, the number of values chosen
for each input parameter, the number of relations, and the
number of parameters in each relation.

PairTest is a software tool that generates a test set satisfying
the pairwise testing strategy for a system [Lei98]. The major
features of PairTest include the following:

- “PairTest supports the generation of pairwise test sets for
systems with or without existing test sets and for systems
modified due to changes of input parameters and/or values.

- PairTest provides information for planning the effort of
testing and the order of applying test cases.

- PairTest provide a graphical user interface (GUI) to make
the tool easy to use.

- PairTest is written in Java and thus can run on different
platforms.”

The PairTest tool was developed by Dr. K. C. Tai and his
students Ho-Yen Chang and Yu Lei at North Carolina State
University [Lei98, http://renoir.csc.ncsu.edu/Tools/]. Another
such tool is AETG [Coh97]. PairTest uses a somewhat
different test-case generation algorithm than does AETG.

5.4 Process

The importance of continuous software reliability
evaluation is in establishing quality conditions which can be
used for software process control. In the system and field

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 11

testing phases standard activities include: i) execution of
system and field acceptance tests, ii) checkout of the
installation configurations, and, iii) validation of software
functionality and quality. In the operation and maintenance
phases the essential SRE elements are a) continuous
monitoring and evaluation of software field reliability, b)
estimation of product support staffing needs, and c) software
process improvement.

SRE augments all these activities by requiring software
developers and maintainers to a) finalize and use operational
profiles, b) actively track the development, testing and
maintenance process with respect to quality, c) use reliability
growth models to monitor and validate software reliability and
availability, and d) use reliability-based test stopping criteria
to control the testing process and product patching and release
schedules.

Ideally, the reaction to SRE information would be quick,
and correction, if any, would be applied already within the
life-cycle phase in which the information is collected.
However, in reality, introduction of an appropriate feedback
loop into the software process, and the latency of the reaction,
will depend on the accuracy of the feedback models, as well
as on the software engineering capabilities of the organization.
For instance, it is unlikely that organizations below the third
maturity level on the SEI Capability Maturity Model scale
[Pau93] would have processes that could react to the feedback
information in less than one software release cycle. Reliable
latency of less than one phase, is probably not realistic for
organizations below level 4 . This needs to taken into account
when the level and the economics of SRE implementation is
considered .

References

[Abr92] S.R. Abramson et al., "Customer Satisfaction-Based
Product Development," Proc. Intl. Switching Symp., Vol.
2. Inst. Electronics, Information, Communications
Engineers, Yokohama, Japan, pp. 65-69, 1992.

[AIA93] AIAA/ANSI Recommended Practice for Software
Reliability, ANSI/AIAA, R-103-1992, American Inst., of
Aeronautics and Astronautics, 1993.

[Bel90] BELLCORE, Reliability and Quality Measurements for
Telecommunications Systems (RQMS) - TR-TSY-000929,
Issue 1, June 1990.

[Boe89] B.W. Boehm, Tutorial: Software Risk Management, IEEE
CS Press, 1989.

[Bri93] L.C. Briand, W.M. Thomas and C.J. Hetsmanski,
"Modeling and Managing Risk Early in Software
Development," Proc. 15th ICSE, pp 55-65, 1993.

[Bro92] S. Brocklehurst and B. Littlewood, "New Ways to Get
Accurate Reliability Measures," IEEE Software, pp. 34-42,
July 1992.

[Chr90] D.A. Christenson, S.T. Huang, and A.J. Lamperez,
"Statistical Quality Control Applied to Code Inspections,"
IEEE J. on Selected Areas in Communications, Vol. 8 (2),
pp. 196-200, 1990.

[Coh94] D. M. Cohen, S. R. Dalal, A. Kajla, and G. C. Patton
"The Automatic Efficient Test Generator (AETG)
System", Proc. IEEE Int. Symp. Software Reliability
Engineering, 1994, pp. 303-309.

[Coh96] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C.
Patton, "Combinatorial Design Approach to Test
Generation", IEEE Software, Sept. 1996, pp. 83-88.

[Coh97] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton, "The AETG system: an approach to testing
based on combinatorial design, "IEEE Trans. Soft.
Eng., Vol. 23, No. 7, July 1997, pp. 437-444..

 [Cra92] Cramp R., Vouk M.A., and Jones W., "On Operational
Availability of a Large Software-Based
Telecommunications System," Proc. Third Intl.
Symposium on Software Reliability Engineering, IEEE
CS, 1992, pp. 358-366

[Ehr93] W. Ehrlich, B. Prasanna. J. Sampfel, J. Wu, "Determining
the Cost of Stop-Test Decisions," IEEE Software, Vol
10(2), pp 33-42., 1993

[Far88] W.H. Farr, "Statistical Modeling and Estimation of
Reliability Functions for Software (SMERFS) — Library
Access Guide", TR84-371 (Rev.1), Naval Surface Warfare
Center, Dahlgren VA; also "SMERFS User's Guide,"
TR84-373 (Rev.1), 1988.

[FCC92] Federal Communications Commission, "Notification by
Common Carriers of Service Disruptions," 47 CFR Part 63,
Federal Register, Vol. 57 (44), March 5, 1992, pp 7883-
7885.

[Fra88] E.G. Frankel, Systems Reliability and Risk Analysis,
Second Revised Edition, Kluwer Academic Publishers,
1988.

[Goe79] A.L. Goel and K. Okumoto, "Time-Dependent Error-
Detection Rate Model for Software Reliability and other
Performance Measures, " IEEE Trans. on Reliability, Vol
R-28(3), pp. 206-211, 1979.

[IEE86] IEEE Std. 1012-1986, IEEE Standard Software
Verification and Validation Plans, IEEE 1986.

[IEE88a] IEEE Std. 982.1-1988, IEEE Standard Dictionary of
Measures to Produce Reliable Software, IEEE 1988.

[IEE88b] IEEE Std. 982.2-1988, IEEE Guide for the use of IEEE
Standard Dictionary of Measures to Produce Reliable
Software, IEEE 1988.

[IEE90] IEEE Std. 610.12-1990, IEEE Standard Glossary of
Software Engineering Terminology, IEEE 1990.

[Jon93] Jones, W. D., and Gregory, D., "Infinite Failure Models for
a Finite World: A Simulation of the Fault Discovery
Process," Proceedings of the Fourth International
Symposium on Software Reliability Engineering, pp. 284-
293, November 1993

[Kan93a] Kanoun K., Kaaniche M., Laprie J-C., and S. Metge
"SoRel: A Tool for Software Reliability Analysis and
Evaluation from Statistical Failure Data," Proc. 23rd IEEE
intl. Symp. on Fault-Tolerant Computing, Toulouse,
France, June 1993, pp. 654-659.

[Kan93b] Kanoun K., Kaaniche M., and Laprie J-C., "Experience in
Software reliability: From Data Collection to Quantitative
Evaluation," Proc. Fourth Intl. Symposium on Software
Reliability Engineering, Denver, Colorado, November 3-6,
1993, pp. 234-245.

[Kho90] T.M. Khoshgoftaar and J.C. Munson, "Predicting Software
Development Errors Using Software Complexity Metrics,"
IEEE J. on Selected Areas in Communications, Vol. 8 (2),
pp 253-261, 1990.

[Lap91] J.C. Laprie, K. Kanoun, C. Beounes, and M. Kaaniche,
"The KAT (Knowledge-Action-Transformation) Approach
to the Modeling and Evaluation of Reliability and
Availability Growth," IEEE Transactions on Software
Engineering, IEEE, Vol 18 (4), April 1991, pp. 701-714.

[Lei98] Y. Lei and K. C. Tai, "In-Parameter-Order: A test
generation strategy for pairwise testing," Proc. 3rd IEEE

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 12

High-Assurance Systems Engineering Symposium, Nov.
1998, 254-261.

[Lyu 94] M.R. Lyu (ed.), Software Fault Tolerance, Trends-in-
Software Book Series, Wiley, 1994

[Lyu92] M.R. Lyu and A. Nikora, "Applying Reliability Models
More Effectively," IEEE Software, pp. 43-45, July 1992.

[Lyu96] Handbook of Software Reliability Engineering, McGraw
Hill, editor M. Lyu, 1996.

[Mal91] Y.K. Malaiya, Editor, Software Reliability Models:
Theoretical Developments, Evaluation and Application,
IEEE CS Press, 1991.

[Mus87] J.D. Musa, A. Iannino, and K. Okumoto, Software
Reliability: Measurement, Prediction, Application,
McGraw-Hill, New York, 1987.

[Mus90] J.D. Musa, and W.W. Everett, "Software-Reliability
Engineering: Technology for the 1990s," IEEE Software,
Vol. 7, pp. 36-43, November 1990

[Mus93] J.D. Musa, "Operational profiles in Software-Reliability
Engineering," IEEE Software, Vol. 10 (2), pp. 14-32,
March 1993.

[Mus98] J.D. Musa, Software Reliability Engineering, McGraw-
Hill, New York, 1998.

[Ohb84] M. Ohba, "Software Reliability Analysis Models," IBM J.
of Res. and Development, Vol. 28 (4), pp. 428-443, 1984.

[Pau93] M.C. Paulk, B. Curtis, M. B. Chrissis, and C.V. Weber,
"Capability Maturity Model, Version 1.1," IEEE Software,
pp. 18-27, July 1993.

[Pha92] H. Pham, ed., Fault-Tolerant Software Systems:
Techniques and Applications, IEEE Computer Society
Press, 1992.

[Pot97] Potok, T. and M. Vouk, "The effects of the business model
on the object-oriented software development productivity,"
IBM Systems Journal, Vol. 36(1), pp. 140-161, 1997

[Pre97] R.S. Pressman, 1997 (Fourth Edition), Software
Engineering: A Practitioner's Approach, McGraw-Hill.

[Riv98a] A. Rivers "Software Reliability Modeling During Non-
Operational Testing", Ph.D. dissertation North Carolina
State University, 1998.

[Riv98b] Anthony T. Rivers and M. A. Vouk "Resource-
Constrained Non-Operational Testing Of Software,"
Proceedings ISSRE 98, 9th International Symposium on
Software Reliability Engineering, Paderborn Germany,
Nov. 4-7, 1998

[San63] Sandler, G. H., Systems Reliability Engineering, Prentice-
Hall, Englewood Cliffs, N.J., 1963.

[She97] Sheldon, F.T., Software Reliability Engineering Case
Studies, 8ht Intl. Symposium on Software Reliability
Engineering, IEEE CS Press, November, 1997.

[Sho83] M.L. Shooman, Software Engineering, McGraw-Hill, New
York, 1983.

[Sin92] N.D. Singpurwalla and R. Soyer, "Nonhomogenous auto-
regressive process for tracking (software) reliability
growth, and their Bayesian analysis," J. of the Royal
Statistical Society, B 54, 145-156, 1992.

[Tri82] K. S. Trivedi, Probability & Statistics with Reliability,
Queuing, and Computer Science Applications, Prentice-
Hall, Englewood Cliffs, N.J., 1982.

[Vou93] M. A. Vouk and K.C. Tai, "Some Issues in Multi-Phase
Software Reliability Modeling," in Proc. CASCON '93, pp.
513-523, October 1993.

[Xie91] M. Xie, Software Reliability Modeling, World Scientific,
Singapore, New Jersey, London, Hong Kong, 1991.

[Yam83] S. Yamada, M. Ohba, and S. Osaki, "S-Shaped Reliability
Growth Modeling for Software Error Detection," IEEE
Tran. on Reliability, Vol. R-32 (5), pp. 475-478, 1983.

[Yam93] S. Yamada, J. Hishitani, and S. Osaki, "Software-
Reliability Growth with Weibull Test-Effort: A Model and
Application," IEEE Trans. Reliability, Vol. 42(1), pp. 100-
106, 1993.

Appendix I - Copies of the Slides

 SLIDE-1

Introduction

• Software Reliability Engineering (Musa 1991)

SRE is the quantitative study of the operational behavior
of software-based systems with respect to user
requirements. It includes
(1) software reliability measurement and estimation

(prediction),
(2) the effects of product and development process

metrics and factors (activities) on operational
software behavior, and

(3) the application of this knowledge in specifying and
guiding software development, acquisition, use, and
maintenance.

 SLIDE-2

High

Low

Technology

Ri
sk

 o
f

A
p

p
lic

a
tio

n

• Latest

• Best
 Available

• Best Practice

• Standard Practice

• Obsolescent

Re
turns

High

Low

• SRE is "Best Practice" at AT&T.
• It has also been, or is being, adopted by many other

leading edge software manufacturers (e.g., Nortel, IBM,
NCR, HP, Cray, etc.)

• Now is the optimal time to adopt it.
• SRE is an essential component of Total Quality

Management in the context of software.

 SLIDE-3

Software Reliability and Availability

• Reliability is one of the most important quality attributes
• Reliability (Fran88)

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 13

- The probability that a system or component will
perform its intended function for a specified period
of "time", under required conditions.

It can also be defined as the probability that a system,
subsystem, or component will give specified
performance for the duration of a mission when used
in the manner and for the purpose intended, given
that the system, subsystem, or component is
functioning properly at the start of the mission.

 SLIDE-4

• Availability (Fran88)
- The probability or degree to which a software or an

equipment will be ready to start a mission when
needed.

Availability can be expressed as up-time availability,
steady state availability, and instant availability.

• Dependability (Fran88)
- The probability or degree to which an equipment will

continue to work until a mission is completed.

 SLIDE-5

Value of Software Reliability and Availability
Measurement

• Software reliability engineering can guide your decisions
and improve performance as a software engineer or
manager.

How?

1. It is customer oriented.
2. It is the most important and measurable attribute of

software quality.

 SLIDE-6

3. It lets you understand the user needs in a quantitative way
(tradeoffs, better management).

4. Improves development and operational decisions
(specification of design goals, schedules, resources,
development management, impact of decisions, control of
quality level, etc.)

5. Increases productivity (allows optimization of resources
and compliance with customer needs, e.g. test stopping
criteria)

6. Improves position of the organization (company) through
customer satisfaction, reputation, "market share",
"profitability").

 SLIDE-7

Cost and Accuracy

• Benefits are far greater than costs.
• Reliability measurement costs are typically about 0.1 -

0.3% of the project cost.
• Benefits (savings) are typically an order of magnitude

larger.

 SLIDE-8

Software Reliability Measurement and Estimation
(Prediction)

• There are many metrics (e.g. collected in IEEE
Standards).

• The metrics and models can be classified in many
different ways. One possibility is by the life-cycle phase
(Rama82): Development (debugging) phase, Validation
phase, Operational phase, Maintenance phase, and
Correctness measures (test reliability, e.g. error seeding,
test coverage measures, etc.)

 SLIDE-9

Nelson's Model

Let P{E} denote probability of event E. Then, in most general
terms, reliability over i discrete units of exposure period is:

R(i)= reliability over i "runs"

= P{no failure over i "runs"}

Assuming that inputs are selected independently according to
some probability distribution function, and faults are static (no
corrections take place for the duration of the measurement) we
have

R(i) = [R(1)i] = Ri

where R + R(1), i.e. the probability that the program will
operate correctly on the next test case and

R = 1 – lim (n→infinity) {nf/n}

where n is the number of runs, and nf is the number of failures
in n runs.

 SLIDE-10

Approximation (estimate of R)

Assuming that inputs are selected independently according to
some probability distribution function, and faults are static (no
corrections take place for the duration of the measurement) we

can estimate the operational software reliability, R
^

 , by

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 14

R
^

 = 1 -
nf
n , Var(R

^
) =

nf(n-nf)

n
3

where n is the number of testing runs, and nf is the number of
failures in n runs.

 SLIDE-11

Confidence Bounds

Approximate confidence bound on this estimate can be

obtained by considering the proportion
nf
n and making

assumptions about it.

Assuming that the sampling distribution of the estimate p̂ =
nf
n

is approximately normally distributed and that n>30, then [e.g.
see Wal78]: a (1-α)100% confidence interval for the binomial
parameter p is approximately

p̂ - zα/2
p̂q̂
n < p < p̂ + zα/2

p̂q̂
n

where p̂ is the proportion of successes in a random sample of

size n, q̂ = 1 - p̂ , and zα/2 is the value of the standard normal

curve leaving an area of α/2 to the right. For α=0.95, z0.025 =
1.96.

 SLIDE-12

Continuous Exposure Time

For a continuous exposure variable t, reliability is defined as:

R(t) = reliability over time t = P{no failure in interval [0,t]}

Then

R(i) = [R(1)i] = Ri

let the period (0,t] be divided into i segments each of which is
t/i in length. Let also the probability that program fails at any
instant (of length t/i) be λt/i. Then the probability that the
program does not fail in the interval (0,t] is approximately

R(t) = [1 -
λt
i]i

If we let the intervals become smaller and smaller, i.e. i tends
to infinity the above expression becomes

Lim(i →infinity){[1 -
λt
i]

-i/(λt)
}
-λt

 .

Let -λt/i = h, then the above becomes

Lim(h →0){[1 + h]
1/h

}
-λt

 = e
-λt

,

since the limit in the braces is the common definition of “e”.
Therefore, in the case of continuous exposure

R(t) = e
-λt

.

 SLIDE-13

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70 80 90 100

R
e
l
i
a
b
i
l
i
t
y

Time (CPU hrs)

Failure intensity = 0.1/CPU hr

As the testing progresses more test cases are executed and the
system response is verified. With successful corrections the
estimate of the reliability (R) of the system increases.

 SLIDE-14

The Idea of Quality (Reliability) Growth

During testing measure software "failure intensity", or number
of failures per unit "time" (time could be CPU minutes or
similar) by counting failures and recording times at which
failures occur.

Fit an appropriate reliability model.

0.0001

0.0010

0.0100

0.1000

0 20 40 60 80 100 120 140

Cumulative Failures

F
a
i
l
u
r
e

I
n
t
e
n
s
i
t
y

Basic Execution
Time Model

Logarithmic
Poisson Model

|
|
|

|
|
|

Use the model to predict future behavior of the effort (how
much longer should we test to reach objective failure
intensity, how many failures are users likely to experience in
the field, etc.).

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 15

 SLIDE-15

Software Reliability Models

Classification by life-cycle phases [Rama82]:
Development (debugging) phase

Validation phase
Operational phase
Maintenance phase

Correctness measures
(test reliability, error seeding, test coverage measures, etc.)

SLIDE-16

Testing and Debugging Phase

Frequent assumption is that correction of errors does not
introduce any new errors. The idea is to increase the reliability
of the software (reliability grows). Hence reliability growth
models. All models in this class treat the program as a black
box. There are two subclasses:

Error counting models:

These models estimate both the number of errors remaining in
the program as well as its reliability.

Non-Error Counting Models:

The non-error counting models only estimate the reliability of
the software.

SLIDE-17

λ

τDebugging Time

F
ai

lu
re

 I
n

te
n

si
ty

variable step ∆λ

Stochastic

on error
correction

λ

τDebugging Time

F
ai

lu
re

 I
n

te
n

si
ty

constant step ∆λ

Deterministic

on error
correction

λ

τDebugging Time

F
ai

lu
re

 I
n

te
n

si
ty

Tester percieved
failure intensity is
a varying quantity

Bayesian

even when
no changes
are made

 SLIDE-18

An Example

Observed failure intensity can be computed in a
straightforward manner from the tables of failure time or
grouped data (e.g. Musa et al. 1987).

First
failure

Second
failure

ith
failure

Last
failure

End of
testing

t
1

t 2 t
i-1

t
i t

m
t

end
... ...

Example: (136 failures total):
Failure Times (CPU seconds): 3, 33, 146, 227, 334422, 351, 353,
444, 556, 557711, 709, 759, 836 ..., 88682.

Data are grouped into sets of 5 and the observed intensity,
cumulative failure distribution and mean failure times are
computed, tabulated and plotted.

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 16

 SLIDE-19

Cum. Failures Cum. Time Intensity Time
5 342 0.014620 171.00

10 571 0.021834 456.50
15 968 0.012594 769.50
20 1984 0.004921 1476.00
25 3098 0.004488 2541.00
30 5049 0.002563 4073.50
35 5324 0.018182 5186.50
40 6380 0.004735 5852.00
45 7644 0.003956 7012.00
50 10089 0.002045 8866.50
55 10982 0.005599 10535.50
60 12559 0.003171 11770.50
65 14708 0.002327 13633.50
70 16185 0.003385 15446.50
75 17758 0.003179 16971.50
80 20567 0.001780 19162.50
85 25910 0.000936 23238.50
90 29361 0.001449 27635.50
95 37642 0.000604 33501.50

100 42015 0.001143 39828.50
105 45406 0.001474 43710.50
110 49416 0.001247 47411.00
115 53321 0.001280 51368.50
120 56485 0.001580 54903.00
125 62661 0.000810 59573.00
130 74364 0.000427 68512.50
135 84566 0.000490 79465.00
136 88682 0.000243 86624.00

Intensity (failures/CPU sec) =
∆f
∆t

 =
5

Cum.T2-Cum.T1

Time (average) = Cum.T1 +
∆t
2

Two common models are the "basic execution time model"
and the "logarithmic Poisson execution time model" (e.g.
Musa et al. 1987).

 SLIDE-20

Basic Execution Time Model

Failure intensity λ(τ) with debugging time τ:

λ(τ) = λ0e
-

λ0
ν0

 τ

where λ0 is the initial intensity and ν0 is the total expected
number of failures (faults). Also

λ(τ) = λ(µ) = λ0 (1 -
µ
νο

)

where µ(τ) is the mean number of failures experienced by
time τ.

µ(τ) = ν0(1 - e
-

λ0
ν0

 τ
)

 SLIDE-21

An Example: T1 Data from Musa et al 1987.

100000800006000040000200000
10 -4

10 -3

10 -2

10 -1

T1 Data from Musa et al. 1987

CPU Execution Time (sec)

Fa
ilu

re
 In

te
ns

ity
 (

fa
ilu

re
s/

C
PU

 s
e

c

Basic Execution Time Model

Logarithmic-Poisson Model

Observed Intensity

• In this case the Logarithmic-Poisson Model fits somewhat
better than the Basic Execution Time Model. In some
other projects BE model fits better than LP model.

 SLIDE-22

Some Derived Information

Additional expected number of failures, ∆µ, that must be
experienced to reach a failure intensity objective

∆µ =
ν0
λ0

 (λP - λF) ,

where λP is the present failure intensity, and λF is the failure

intensity objective. The additional execution time, ∆τ,
required to reach the failure intensity objective is

∆τ =
ν0
λ0

 ln
λP
λF

 SLIDE-23

• After fitting a model describing the failure process we can
estimate its parameters, and the quantities such as the total
number of faults in the code, future failure intensity and
additional time required to achieve a failure intensity
objective.

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 17

• It is extremely important to compute confidence bounds
for any estimated parameters and derived quantities in
order to see how much can one rely on the obtained
figures.

• Accurate and comprehensive data collection is of ultimate
importance.

• For example, The failure data should include
• the times of successive failures (alternatively intervals

between failures may be collected),
• or the number of failures experienced during an interval of

testing (grouped data),
• information about each corrected fault,
• information about the parts of the code affected by the

changes,
etc.

 SLIDE-24

Availability

• The probability or degree to which a software or an
equipment will be ready to start a mission when needed.

Steady state availability. The system becomes
independent of its starting state after operating for enough
time. This steady-state availability of the system is

Ass =
µ

µ+λ

Where µ is the system repair rate (failures repaired per
unit time) and λ is the system failure rate (failures per unit
time). Both are assumed constant.

 SLIDE-25

Mean Time to Failure and Repair

• Mean time to failure = MTTF =
1
λ

• Mean time to repair = MTTR =
1
µ

Ass =
MTTF

MTTR+MTTF

 SLIDE-26

Operational Profile

• The crucial concept is the operational profile.
• Operational profile (OP) is the set of relative frequencies

of occurrence of the run types, usually expressed as
fractions of the total of runs (in which case, we have
probabilities).

• The OP is used to guide testing, but it can be also
employed to guide managerial and engineering decisions
throughout the software life-cycle by highlighting most
important alternatives (prioritized operational profile).

• The absolutely essential step in applying "Operational
Testing" is the definition of the profile itself.

SLIDE-27

Risk-Based Profile

• Risk-based profiles combine the usage pattern with the
cost or loss factors into a risk-profile.

• Risk = Probability_of_unsatisfactory_event *
Cost_or_Loss_magnitude.

 SLIDE-28

Procedure

• Participants: system engineers, high-level designers, test
planners, product planning, marketing.

• Process: Iterative, converging.

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 18

• Determine the profile by
- Define the customer profile
- Establish the user profile
- Define the system-mode profile (number of profiles

needed)
- Determine the functional profile(s)
- Determine the operational profile(s)

• The process starts during the requirements phase and
continues until the system testing starts.

 SLIDE-29

• Profile: A set of disjoint alternatives with probability of
occurrence attached.

Alternative Probability
A 0.3
B 0.6
C 0.1

- If usage is available as a rate (e.g., transactions per
hour), it needs to be converted to probability by
dividing by the total number of transactions per hour.

- Probability may not be the only criterion for
choosing the profile. Cost of failure (severity,
importance) of that operation plays a role. Generate
profiles for each category of criticality (typically four
separated by at least an order of magnitude in
effects).

 SLIDE-30

Customer Profile

• Customer: person, group, or institution that ACQUIRES
the system.

Telephone Switch
Customer

group
Probability

Local Carrier 0.7
Inter-City

Carrier
0.3

 SLIDE-31

User Profile

• Customer: person, group, or institution that EMPLOYS
the system.

User group Local (0.7) Inter-City
(0.3)

Total

within total within total
Households 0.6 0.42 0.2 0.06 0.48
Businesses 0.3 0.21 0.6 0.18 0.39
Emergency

Services
0.05 0.035 0.001 .0003 .0353

Other 0.05 0.035 0.199 .0597 .0947

 SLIDE-32

Mode Profile

• System mode is a set of functions or operations that are
grouped for conveniences in analyzing execution
behavior. System can switch among modes, or two or
more can be active.

• Determine operational profile for each system mode.

• Some bases for mode classification:
- User groups
- Environment (e.g., overload vs. normal, high-noise

vs. low-noise)
- Criticality
- User experience
- Platform
- How user employs system operations to accomplish

system functions.

 SLIDE-33

Assume (voice: inter-city household 99%, local household
90%, business 70% both, System Administration 30% of
Other, and Maintenance 70% of Other, rest data)

Mode Probability
Voice

(personal)
0.4374 0.42*0.9+0.06

*0.99
Voice

(business)
0.273 0.39*0.7

Data 0.1596 0.42*0.1 +
0.06*0.01 +

0.3*0.39
Emergency 0.0353 0.0353

System Admin. 0.02841 0.0947*0.3
Maintenance 0.06629 0.0947*0.7

 SLIDE-34

Functional Profile

• Break each system mode into user-oriented functions
(features + environment) needed for its operation.

• Generate function list, find probability of function
occurrence (relative use of functions within that profile).
A function may be composed of one or more tasks,

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 19

operations, and parameters and environmental variables
(inputs).

• Keep the number of functions in the range 50 to several
hundred.

X(A,B)
with

A = A1 or A2
B = B1 and B2

• Add environmental variables (e.g., platform,
analog/digital device, operating system). Probability of
occurrence.

 SLIDE-35

• Possible functions:
X or

{X(A1,B), X(A2,B)} or
{X(A1,B1), X(A2,B1), X(A1,B2), X(A2,B2)}

• Implicit format example:

X(A,C), {A1,A2}, {C1, C2, C3}

Parameter Value Probability
A1 0.1
A2 0.9
C1 0.5
C2 0.1
C3 0.4

• Explicit format example:

{X(A1,B1), X(A2,B1), X(A1,B2), X(A2,B2)}

Parameter Value Probability
A1*C1 0.05
A1*C2 0.01
A1*C3 0.04
A2*C1 0.45
A2*C2 0.09
A2*C3 0.36

 SLIDE-36

Call Tree Approach

F1

F11
(0.1)

F12
(0.55)

F1x
(0.03)

•••

F111
(0.7)

F112
(0.3)

F1121
(0.3)

F1122
(0.4)

F1123
(0.3)

Functions for
Mode α

Environment Probability

F1 A
F11 A
F11 B
F12 A
F12 B

 SLIDE-37

Operational Profile

• Profile of operations that implement functions (features)
that users use.

• Functions EVOLVE into operations during system
development.

• Operations are the ones tested. Their profile determines
testing resources, test cases and the order of their
execution.

• Associate operations with run types (execution segment
associated with a user-oriented task, e.g., command in a
particular environment).

SLIDE-38

Input States

• Identify run input states, and system input space.
• Partition input space, get partition probabilities. States

will be selected from these partitions according to these
probabilities.

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 20

 SLIDE-39

Test Selection and Testing

• Select operation according to their occurrence probability
or usage level in the call tree.

• Partition operations into run categories (if possible) -
allowed/meaningful combinations of parameters (e.g.,
two at a time). Select randomly or according to
experimental design..

• Randomly select a particular run.
• Pay special attention to special issues (e.g., safety).
• Control (limit) the number of operations.
• Update profile on a regular basis (monitor the field

usage).

SLIDE-40

Fail-States

• Pay attention to clustering of fail-states and perform root-
cause analysis.

SLIDE-41

Root-Cause Analysis

 SLIDE-42

Regression Testing

• Do not focus only on the changed code.
• Augment testing of the changed operations with a general

operational profile test. It is an efficient way of
accounting for the possible influence of the changes on
other than the modified operations.

• Pay special attention to special issues (e.g., safety).
• Keep a record of detected problems and analyze it for

trends, special areas of concern, etc.

 SLIDE-43

Design for Testability

• Design the system so that the control (limit) of the
number of operations is possible (e.g., if system modes do
not interact then they can be tested separately and
minimum interaction testing needs to be done). Good
design practices include minimization of the coupling and
maximization of the coherence of software modules
(object-oriented approach).

• Design system to limit number of environmental variables
(cases).

• Pay special attention to special issues (e.g., safety) - they
have to be accounted for and TESTABLE.

• Design the system to accommodate testing by approaches
such as the statistical experimental design.

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 21

 SLIDE-44

Constrained Testing

1.00.80.60.40.20.0
0.0

0.2

0.4

0.6

0.8

1.0

Fraction of Test Cases Executed

Simulation

"Sampling
Without
Replacement"

"Sampling With
Replacement"

Guided Constrained
Testing

Traditional
Testing

Fraction of Testing Resources Expended

Unguided Constrained
Testing

Target
Quality
Level

 SLIDE-45

Pairwise Testing (1)

Parameters A, B, C, D and E which have the following valid
values

 A B C D E
 A1 B1 C1 D1 E1
 A2 B2 C2 D2 E2
 A3 B3 D3

will require 3x3x2x3x2 = 108 test cases if all three parameters
are related (interacting) and we wish to cover all combinations
of the parameters.

 SLIDE-46

Pairwise Testing (2)

Pairwise testing strategy requires only 11 (eleven) tests to
cover all PAIRS of combinations at least once.

 Case A B C D E

 1 A1 B1 C1 D1 E1
 2 A1 B1 C1 D1 E2
 3 A3 B1 C1 D3 E2
 4 A3 B3 C1 D1 E2
 5 A2 B2 C1 D1 E2
 6 A3 B2 C2 D1 E1
 7 A1 B2 C2 D3 E1
 8 A2 B3 C2 D3 E1
 9 A1 B3 C1 D2 E1
 10 A3 B2 C1 D2 E1
 11 A2 B1 C2 D2 E2

Examples of some other choices

- Suppose D and E are new paramters and one wants to run a
regression test only. Generate test according to relation
{D,E}. - only six (6) tests. This choice focuses on checking
interactions between new parameters only.

- Test set according to relation {D,E} and other relations
involving some new and old parameters. This is limited
checking of interactions between new and ol parameters.

- Delete some values of parameters A, B and C and then
generate a test set according to relation {A,B,C,D,E}. This
is another way of checking limited interactions between new
and old parameters.

 SLIDE-47

PairTest
(http://renoir.csc.ncsu.edu/Tools/PairTest)

PairTest is a software tool that generates a test set satisfying
the pairwise testing strategy for a system [Lei98}. The major
features of PairTest include the following:

- “PairTest supports the generation of pairwise test sets for
systems with or without existing test sets and for systems
modified due to changes of input parameters and/or values.

- PairTest provides information for planning the effort of
testing and the order of applying test cases.

- PairTest provide a graphical user interface (GUI) to make
the tool easy to use.

- PairTest is written in Java and thus can run on different
platforms.

- The PairTest tool was developed by Dr. K. C. Tai and his
students Ho-Yen Chang and Yu Lei at North Carolina State
University.”

 SLIDE-48

Relationship with TQM

• TQM principles include
customer satisfaction,
quality culture,
improvement of processes, education and training (job
skills and TQM tools),
defect prevention instead of reactive elimination,
use of data and statistical tools,
team approach (both intra- and inter-departmental, and
hierarchical), and
commitment to continuous improvement.

 SLIDE-49

• SRE is an integral part of TQM because SRE activities,
tasks and techniques are part of TQM.

• Software Maturity Index (SEI)
The higher the software process maturity of an
organization the more elements of TQM (and SRE) need
to be incorporated into its process model. Software

© 2000 Annual RELIABILITY and MAINTAINABILITY Symposium Vouk - 22

maturity index is a measure of extent to which TQM has
been permeated the software process. Certain maturity
must be present before SRE can be fully implemented.

SLIDE-50

Software Maturity Levels
Level Description Problem Areas
1: Initial Poorly defined procedures and

controls; ad hoc process. The
organization operates without
formalized procedures, cost
estimates, and project plans.
Even when plans and controls
exist there is no management
mechanisms to ensure they are
followed. Tools are not well
integrated with the process,
and are not uniformly applied.
Change control is lax and
senior management is not
exposed to or does not
understand the key software
problems and issues.

Project management,
project planning,
configuration
management, software
quality assurance, use
of modern tools and
technology.

2:
Repeatable

Basic project controls have
been established. Organization
has experience with similar
projects, but faces sizable risks
when doing novel projects.
Quality problems are frequent
and framework for orderly
improvement is lacking.
Software fault data are being
collected in a standardized and
formal fashion.

Training, technical
practices (reviews,
testing), process focus
(standards, process
groups).

3: Defined Commitment to software
process evaluation and
improvement through
establishment of a software
process group(s) and
appropriate process
architecture(s). There is mostly
qualitative understanding of
the needed process.
Appropriate software
engineering standards,
methods and technologies are
in place.

Process measurement,
process analysis,
quantitative quality
plans.

4:
Managed

Process is quantified.
Measurements for the quality
and productivity of each key
task. Process database, analysis
and dissemination of process
related information (e.g.
process efficiency). Errors can
be predicted with acceptable
accuracy.

Changing to new
technology, problem
analysis, problem
prevention.

5:
Optimizing

Process improvement feed-
back and feed-forward controls
are established. Rigorous
defect causal analysis and
defect prevention. Proactive
management.

Automation

SLIDE-51

Summary

Software Reliability Engineering is the quantitative study of
the operational behavior of software-based systems with
respect to user requirements. It includes

(1) software reliability measurement and estimation
(prediction),

(2) the effects of product and development process
metrics and factors (activities) on operational
software behavior, and

(3) the application of this knowledge in specifying and
guiding software development, testing, acquisition,
use, and maintenance (this includes the association
with the business model).

